Nanostructural hierarchy increases the strength of aluminium alloys.

نویسندگان

  • Peter V Liddicoat
  • Xiao-Zhou Liao
  • Yonghao Zhao
  • Yuntian Zhu
  • Maxim Y Murashkin
  • Enrique J Lavernia
  • Ruslan Z Valiev
  • Simon P Ringer
چکیده

Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries-an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Investigation of Modelling Material Behavior in Autofrettaged Tubes Made from Aluminium Alloys

Normal 0 false false false EN-US X-NONE AR-SA The ratio of compression yield strength to the initial tensile yield strength is called Bauschinger effect factor, BEF. A nonlinear strain hardening mathematical model is proposed for 7075 aluminium alloy (A7075). Uniaxial tension-compression experimental data are used to figure out a suitable model to study the BEF. Hence, uniaxial tension-co...

متن کامل

Strengthening Mechanisms in the Aged 2024 and 7075 Aluminium Alloys

Aluminum 2024 and 7075 alloys which are widely used in aerospace and marine applications were chosen to investigate their strengthening mechanisms. Using differential thermal analysis (DIA), metallography and tension tests, the best solutionizing conditions were determined to be 500±5°C and 2 hours for 2024 and 480?±5°C and 1 hour for 7075 alloy. Aging was performed in the range of 100 to 200°C...

متن کامل

Advanced Nanostructural Analysis of Aluminium Alloys Using Atom Probe Tomography

This paper sets out the needs for and recent advances in microscopy in Al alloys, using solutesolute and solute-vacancy clustering as examples. Cluster-assisted nucleation and cluster strengthening are discussed and this is followed by a discussion of the local electrode atom probe. Heuristic and algorithmic tools for assessing the nanoscale microstructure or nanostructure of Al alloys acquired...

متن کامل

Microstructure and mechanical characteristics of dissimilar aluminium alloy joining employing gas tungsten arc welding

Despite the increased use of aluminium alloys in several industries, their common concern is the difficulty of joining dissimilar alloys using welding techniques. Based on this, the primary purpose of this research is to assess the mechanical characteristics of dissimilar joining of heat-treatable 6061 and non-heat-treatable 5083 aluminium alloys by gas tungsten arc welding and to discover the ...

متن کامل

Structure and Fracture Characteristics of Magnesium - Aluminium Alloys under Elevated Temperatures

Magnesium alloys are primarily used in aeronautical and automobile industry in wide variety of structural characteristics because of their favourable combination of tensile strength (160 to 365 MPa), elastic modulus (45 GPa), and low density (1 740 kg/m), which is two-thirds that of aluminium). Magnesium alloys have high strength-to-weight ratio (tensile strength/density), comparable to those o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010